SCAN
SCAN cursor [MATCH] [COUNT] [TYPE]
- Available since
- 2.8.0
- Time complexity
- O(1) for every call. O(N) for a complete iteration, including enough command calls for the cursor to return back to 0. N is the number of elements inside the collection.
- ACL categories
- @keyspace, @read, @slow
The SCAN
command and the closely related commands SSCAN
, HSCAN
and ZSCAN
are used in order to incrementally iterate over a collection of elements.
SCAN
iterates the set of keys in the currently selected Redict database.SSCAN
iterates elements of Sets types.HSCAN
iterates fields of Hash types and their associated values.ZSCAN
iterates elements of Sorted Set types and their associated scores.
Since these commands allow for incremental iteration, returning only a small number of elements per call, they can be used in production without the downside of commands like KEYS
or SMEMBERS
that may block the server for a long time (even several seconds) when called against big collections of keys or elements.
However while blocking commands like SMEMBERS
are able to provide all the elements that are part of a Set in a given moment, The SCAN family of commands only offer limited guarantees about the returned elements since the collection that we incrementally iterate can change during the iteration process.
Note that SCAN
, SSCAN
, HSCAN
and ZSCAN
all work very similarly, so this documentation covers all four commands. However an obvious difference is that in the case of SSCAN
, HSCAN
and ZSCAN
the first argument is the name of the key holding the Set, Hash or Sorted Set value. The SCAN
command does not need any key name argument as it iterates keys in the current database, so the iterated object is the database itself.
SCAN basic usage #
SCAN is a cursor based iterator. This means that at every call of the command, the server returns an updated cursor that the user needs to use as the cursor argument in the next call.
An iteration starts when the cursor is set to 0, and terminates when the cursor returned by the server is 0. The following is an example of SCAN iteration:
redict 127.0.0.1:6379> scan 0
1) "17"
2) 1) "key:12"
2) "key:8"
3) "key:4"
4) "key:14"
5) "key:16"
6) "key:17"
7) "key:15"
8) "key:10"
9) "key:3"
10) "key:7"
11) "key:1"
redict 127.0.0.1:6379> scan 17
1) "0"
2) 1) "key:5"
2) "key:18"
3) "key:0"
4) "key:2"
5) "key:19"
6) "key:13"
7) "key:6"
8) "key:9"
9) "key:11"
In the example above, the first call uses zero as a cursor, to start the iteration. The second call uses the cursor returned by the previous call as the first element of the reply, that is, 17.
As you can see the SCAN return value is an array of two values: the first value is the new cursor to use in the next call, the second value is an array of elements.
Since in the second call the returned cursor is 0, the server signaled to the caller that the iteration finished, and the collection was completely explored. Starting an iteration with a cursor value of 0, and calling SCAN
until the returned cursor is 0 again is called a full iteration.
Return value #
SCAN
, SSCAN
, HSCAN
and ZSCAN
return a two element multi-bulk reply, where the first element is a string representing an unsigned 64 bit number (the cursor), and the second element is a multi-bulk with an array of elements.
SCAN
array of elements is a list of keys.SSCAN
array of elements is a list of Set members.HSCAN
array of elements contain two elements, a field and a value, for every returned element of the Hash.ZSCAN
array of elements contain two elements, a member and its associated score, for every returned element of the Sorted Set.
Scan guarantees #
The SCAN
command, and the other commands in the SCAN
family, are able to provide to the user a set of guarantees associated to full iterations.
- A full iteration always retrieves all the elements that were present in the collection from the start to the end of a full iteration. This means that if a given element is inside the collection when an iteration is started, and is still there when an iteration terminates, then at some point
SCAN
returned it to the user. - A full iteration never returns any element that was NOT present in the collection from the start to the end of a full iteration. So if an element was removed before the start of an iteration, and is never added back to the collection for all the time an iteration lasts,
SCAN
ensures that this element will never be returned.
However because SCAN
has very little state associated (just the cursor) it has the following drawbacks:
- A given element may be returned multiple times. It is up to the application to handle the case of duplicated elements, for example only using the returned elements in order to perform operations that are safe when re-applied multiple times.
- Elements that were not constantly present in the collection during a full iteration, may be returned or not: it is undefined.
Number of elements returned at every SCAN call #
SCAN
family functions do not guarantee that the number of elements returned per call are in a given range. The commands are also allowed to return zero elements, and the client should not consider the iteration complete as long as the returned cursor is not zero.
However the number of returned elements is reasonable, that is, in practical terms SCAN
may return a maximum number of elements in the order of a few tens of elements when iterating a large collection, or may return all the elements of the collection in a single call when the iterated collection is small enough to be internally represented as an encoded data structure (this happens for small Sets, Hashes and Sorted Sets).
However there is a way for the user to tune the order of magnitude of the number of returned elements per call using the COUNT option.
The COUNT option #
While SCAN
does not provide guarantees about the number of elements returned at every iteration, it is possible to empirically adjust the behavior of SCAN
using the COUNT option. Basically with COUNT the user specifies the amount of work that should be done at every call in order to retrieve elements from the collection. This is just a hint for the implementation, however generally speaking this is what you could expect most of the times from the implementation.
- The default
COUNT
value is 10. - When iterating the key space, or a Set, Hash or Sorted Set that is big enough to be represented by a hash table, assuming no MATCH option is used, the server will usually return count or a few more than count elements per call. Please check the why SCAN may return all the elements at once section later in this document.
- When iterating Sets encoded as intsets (small sets composed of just integers), or Hashes and Sorted Sets encoded as ziplists (small hashes and sets composed of small individual values), usually all the elements are returned in the first
SCAN
call regardless of theCOUNT
value.
Important: there is no need to use the same COUNT value for every iteration. The caller is free to change the count from one iteration to the other as required, as long as the cursor passed in the next call is the one obtained in the previous call to the command.
The MATCH option #
It is possible to only iterate elements matching a given glob-style pattern, similarly to the behavior of the KEYS
command that takes a pattern as its only argument.
To do so, just append the MATCH <pattern>
arguments at the end of the SCAN
command (it works with all the SCAN
family commands).
This is an example of iteration using MATCH:
redict 127.0.0.1:6379> sadd myset 1 2 3 foo foobar feelsgood
(integer) 6
redict 127.0.0.1:6379> sscan myset 0 match f*
1) "0"
2) 1) "foo"
2) "feelsgood"
3) "foobar"
redict 127.0.0.1:6379>
It is important to note that the MATCH filter is applied after elements are retrieved from the collection, just before returning data to the client. This means that if the pattern matches very little elements inside the collection, SCAN
will likely return no elements in most iterations. An example is shown below:
redict 127.0.0.1:6379> scan 0 MATCH *11*
1) "288"
2) 1) "key:911"
redict 127.0.0.1:6379> scan 288 MATCH *11*
1) "224"
2) (empty list or set)
redict 127.0.0.1:6379> scan 224 MATCH *11*
1) "80"
2) (empty list or set)
redict 127.0.0.1:6379> scan 80 MATCH *11*
1) "176"
2) (empty list or set)
redict 127.0.0.1:6379> scan 176 MATCH *11* COUNT 1000
1) "0"
2) 1) "key:611"
2) "key:711"
3) "key:118"
4) "key:117"
5) "key:311"
6) "key:112"
7) "key:111"
8) "key:110"
9) "key:113"
10) "key:211"
11) "key:411"
12) "key:115"
13) "key:116"
14) "key:114"
15) "key:119"
16) "key:811"
17) "key:511"
18) "key:11"
redict 127.0.0.1:6379>
As you can see most of the calls returned zero elements, but the last call where a COUNT
of 1000 was used in order to force the command to do more scanning for that iteration.
When using Redict Cluster, the search is optimized for patterns that imply a single slot.
If a pattern can only match keys of one slot,
Redict only iterates over keys in that slot, rather than the whole database,
when searching for keys matching the pattern.
For example, with the pattern {a}h*llo
, Redict would only try to match it with the keys in slot 15495, which hash tag {a}
implies.
To use pattern with hash tag, see Hash tags in the Cluster specification for more information.
The TYPE option #
You can use the !TYPE
option to ask SCAN
to only return objects that match a given type
, allowing you to iterate through the database looking for keys of a specific type. The TYPE option is only available on the whole-database SCAN
, not HSCAN
or ZSCAN
etc.
The type
argument is the same string name that the TYPE
command returns. Note a quirk where some Redict types, such as GeoHashes, HyperLogLogs, Bitmaps, and Bitfields, may internally be implemented using other Redict types, such as a string or zset, so can’t be distinguished from other keys of that same type by SCAN
. For example, a ZSET and GEOHASH:
redict 127.0.0.1:6379> GEOADD geokey 0 0 value
(integer) 1
redict 127.0.0.1:6379> ZADD zkey 1000 value
(integer) 1
redict 127.0.0.1:6379> TYPE geokey
zset
redict 127.0.0.1:6379> TYPE zkey
zset
redict 127.0.0.1:6379> SCAN 0 TYPE zset
1) "0"
2) 1) "geokey"
2) "zkey"
It is important to note that the TYPE filter is also applied after elements are retrieved from the database, so the option does not reduce the amount of work the server has to do to complete a full iteration, and for rare types you may receive no elements in many iterations.
The NOVALUES option #
When using HSCAN
, you can use the NOVALUES
option to make Redict return only the keys in the hash table without their corresponding values.
redict 127.0.0.1:6379> HSET myhash a 1 b 2
OK
redict 127.0.0.1:6379> HSCAN myhash 0
1) "0"
2) 1) "a"
2) "1"
3) "b"
4) "2"
redict 127.0.0.1:6379> HSCAN myhash 0 NOVALUES
1) "0"
2) 1) "a"
2) "b"
Multiple parallel iterations #
It is possible for an infinite number of clients to iterate the same collection at the same time, as the full state of the iterator is in the cursor, that is obtained and returned to the client at every call. No server side state is taken at all.
Terminating iterations in the middle #
Since there is no state server side, but the full state is captured by the cursor, the caller is free to terminate an iteration half-way without signaling this to the server in any way. An infinite number of iterations can be started and never terminated without any issue.
Calling SCAN with a corrupted cursor #
Calling SCAN
with a broken, negative, out of range, or otherwise invalid cursor, will result in undefined behavior but never in a crash. What will be undefined is that the guarantees about the returned elements can no longer be ensured by the SCAN
implementation.
The only valid cursors to use are:
- The cursor value of 0 when starting an iteration.
- The cursor returned by the previous call to SCAN in order to continue the iteration.
Guarantee of termination #
The SCAN
algorithm is guaranteed to terminate only if the size of the iterated collection remains bounded to a given maximum size, otherwise iterating a collection that always grows may result into SCAN
to never terminate a full iteration.
This is easy to see intuitively: if the collection grows there is more and more work to do in order to visit all the possible elements, and the ability to terminate the iteration depends on the number of calls to SCAN
and its COUNT option value compared with the rate at which the collection grows.
Why SCAN may return all the items of an aggregate data type in a single call? #
In the COUNT
option documentation, we state that sometimes this family of commands may return all the elements of a Set, Hash or Sorted Set at once in a single call, regardless of the COUNT
option value. The reason why this happens is that the cursor-based iterator can be implemented, and is useful, only when the aggregate data type that we are scanning is represented as a hash table. However Redict uses a memory optimization where small aggregate data types, until they reach a given amount of items or a given max size of single elements, are represented using a compact single-allocation packed encoding. When this is the case, SCAN
has no meaningful cursor to return, and must iterate the whole data structure at once, so the only sane behavior it has is to return everything in a call.
However once the data structures are bigger and are promoted to use real hash tables, the SCAN
family of commands will resort to the normal behavior. Note that since this special behavior of returning all the elements is true only for small aggregates, it has no effects on the command complexity or latency. However the exact limits to get converted into real hash tables are user configurable, so the maximum number of elements you can see returned in a single call depends on how big an aggregate data type could be and still use the packed representation.
Also note that this behavior is specific of SSCAN
, HSCAN
and ZSCAN
. SCAN
itself never shows this behavior because the key space is always represented by hash tables.
Further reading #
For more information about managing keys, please refer to the The Redict Keyspace tutorial.
Additional examples #
Iteration of a Hash value.
redict 127.0.0.1:6379> hmset hash name Jack age 33
OK
redict 127.0.0.1:6379> hscan hash 0
1) "0"
2) 1) "name"
2) "Jack"
3) "age"
4) "33"
History #
- 6.0.0
- Added the `TYPE` subcommand.